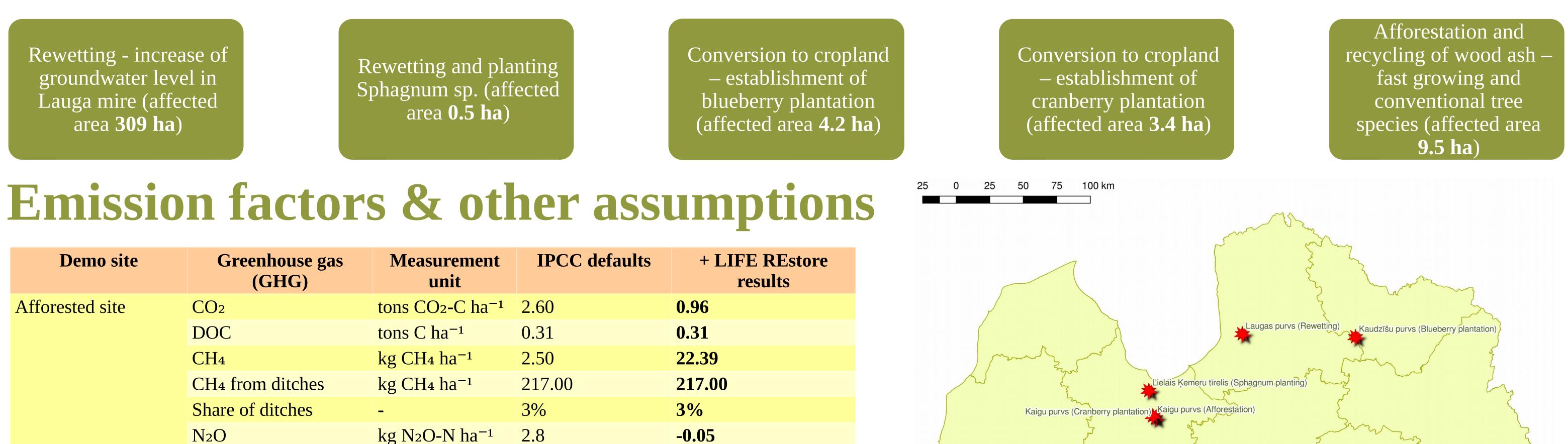


Sustainable and responsible management and re-use of degraded peatlands in Latvia

LIFE REstore

Five demonstration areas in the project – evaluation of impact on the GHG emissions

Andis Lazdiņš, Aldis Butlers, Ainārs Lupiķis, Arta Bārdule Latvia State Forest Research Institute 'Silava' (LSFRI Silava) phone: +37126595586, e-mail: andis.lazdins@silava.lv


RESCORE LIFE project

Objectives

The primary objective of the study is to demonstrate climate change mitigation potential in managed wetlands by implementation of 5 different land management practices in former peat extraction sites. The secondary objective is elaboration of methodology for verifying of the impact of implemented climate change mitigation measures in comparison to the most probable land use scenario in case of no anthropogenic intervention.

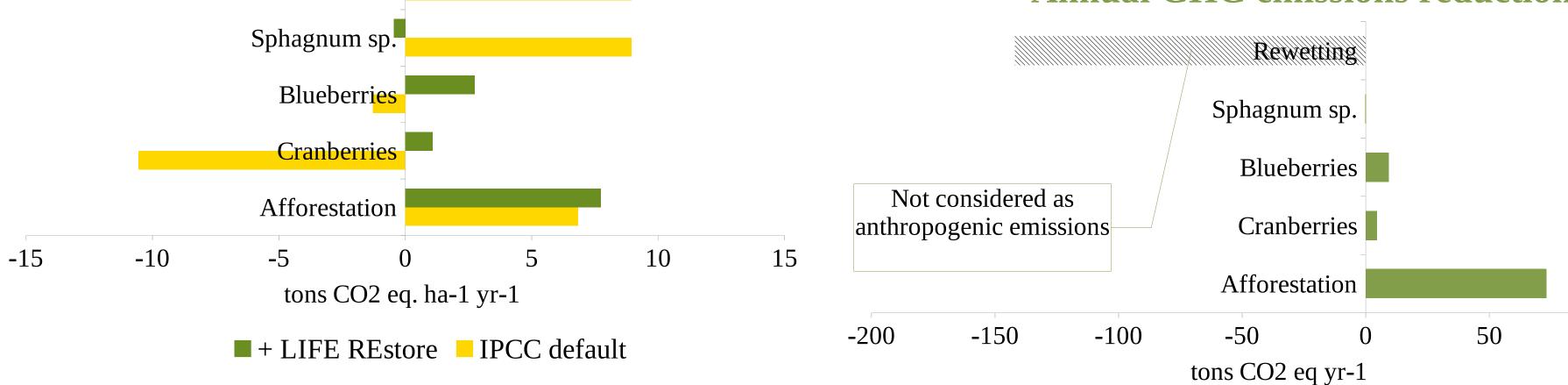
Demo sites

The selected climate change mitigation measures includes two rewetting scenarios – increase of groundwater level in Lauga mire and planting of Sphagnum in Kemeri nature reservation, two conversion to cropland scenarios – establishment of plantation of blueberry plantation in Kaigu mire and establishment of cranberry plantation in Kaudzīšu mire.

		0		
Cranberry plantation	CO ₂	tons CO ₂ -C ha ⁻¹	2.80	0.75
	DOC	tons C ha ⁻¹	0.24	0.24
	CH4	kg CH₄ ha⁻¹	6.10	5.72
	CH4 from ditches	kg CH₄ ha⁻¹	542.00	542.00
	Share of ditches	_	5%	5%
	N ₂ O	kg N2O-N ha ⁻¹	4.3	0.22
Blueberry plantation	CO ₂	tons CO ₂ -C ha ⁻¹	5.30	1.13
	DOC	tons C ha ⁻¹	0.31	0.31
	CH4	kg CH4 ha ⁻¹	1.80	25.87
	CH4 from ditches	kg CH₄ ha⁻¹	1165.00	1165.00
	Share of ditches	-	5%	5%
	N ₂ O	kg N2O-N ha ⁻¹	4.3	0.90
Rewetted areas (<i>Sphagnum sp.</i> <i>platation and Lauga</i> <i>mire</i>)	CO ₂	tons CO2-C ha ⁻¹	-0.23	1.31
	DOC	tons C ha ⁻¹	0.24	0.24
miro)	CH4	kg CH₄ ha⁻¹	122.67	122.67
mire)	CH4 CH4 from ditches	<mark>kg CH₄ ha^{−1}</mark> kg CH₄ ha ^{−1}	122.67 -	122.67
mire)			122.67 - -	122.67 - -
mire)	CH4 from ditches		_	-

Location of demo sites

Changes in other carbon pools


Carbon pool	Measurement unit	Afforested land	Blueberry plantation	Cranberry plantation	Rewetted areas
Woody biomass	tons C ha ⁻¹	93.15	-	-	-
Dead wood	tons C ha ⁻¹	4.50	-	-	-
Ground vegetation	tons C ha ⁻¹	2.00	25.00	13.60	-
Total	tons C ha ⁻¹	99.65	25	13.6	-
Average stock changes (50 years period)	tons C yr ⁻¹	1.99	0.5	0.27	-
	tons CO ₂ yr ⁻¹	7.31	1.83	1	_

GHG emission reduction potential

Rewetting

Annual GHG emissions reduction

Assuming GHG emissions from rewetted areas as nonantropogenic the net GHG emission reduction from the demo sites equals to sum of the emissions reduction from afforested areas, blueberry and cranberry plantations (87.0 tons CO₂ eq. yr⁻¹) and GHG emissions from rewetted areas before implementation of the LIFE REstore project (2676.5 tons CO₂ eq. yr⁻¹), in total **2763.5 tons CO₂ eq. yr⁻¹**.

LIFE 2014 – 2020 Climate change mitigation sub-program project, LIFE14 CCM/LV/001103 **Project period: 01/09/2015 – 30/08/2019. Total budget 1 828 318 EUR, EU contribution 1 096 990 EUR. Partners: Nature Conservation Agency of Latvia, Latvian State Forest Research institute Silava, Latvian Peat Producers Association, NGO Baltic Coasts**

100

Visit restore.daba.gov.lv and follow LIFE REstore on

