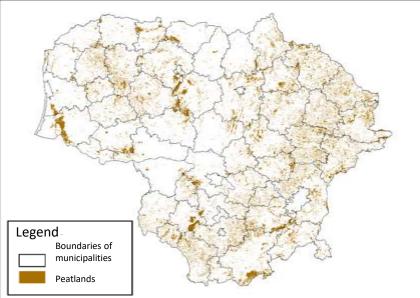


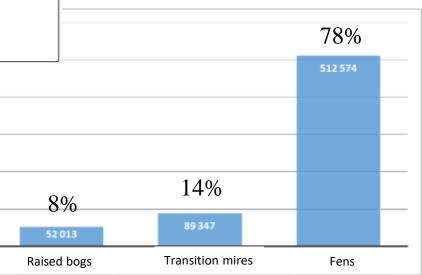
Wise use of degraded peatlands – tool to mitigate climate change

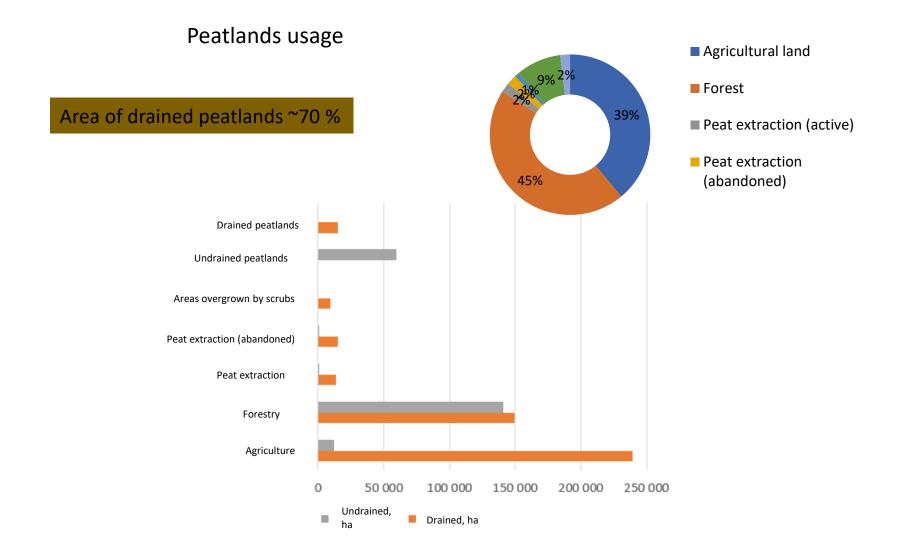

Nerijus ZABLECKIS Environmental expert

LIFE REstore International Conference "Sustainable Management of Degraded Peatlands and Climate Change Mitigation"

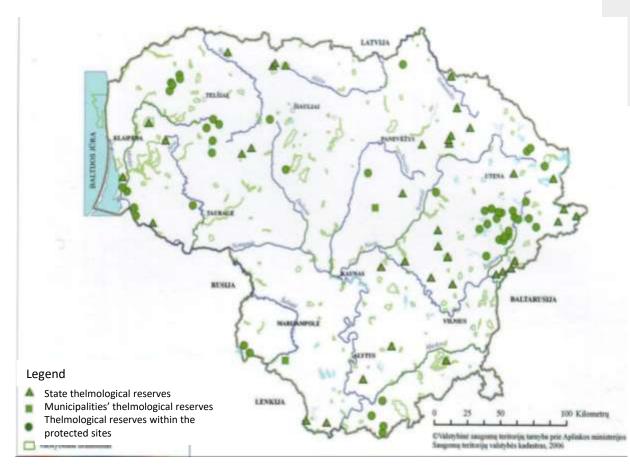
Wise use - what does it mean?

No more drainage based peatland usage




Area of Lithuanian peatlands 654 00 ha = 10 % of countrys' territory

78 % – fens

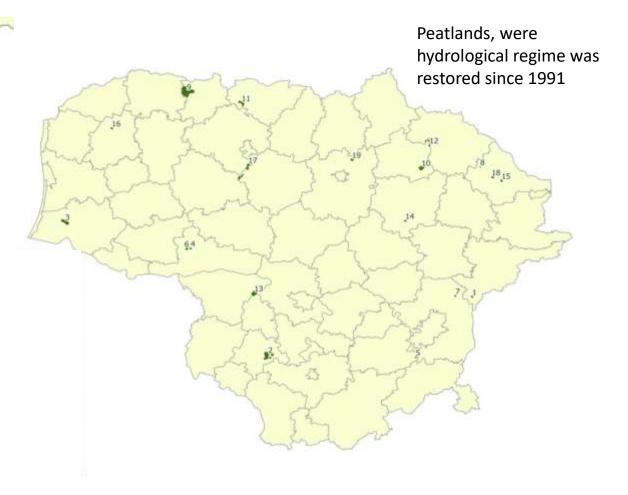

14 % – transition mires

8 % – raised bogs

Protected peatlands in Lithuania

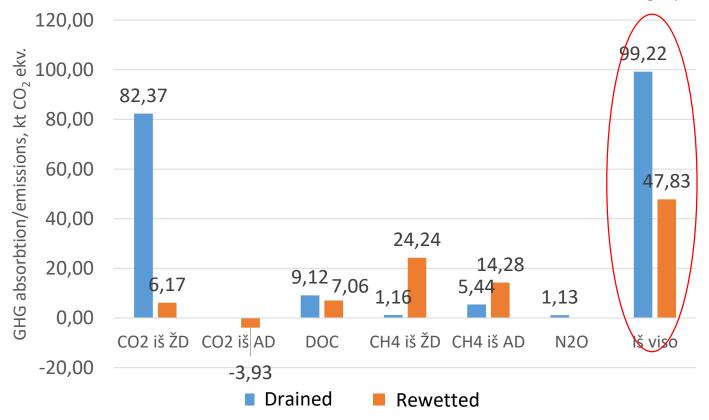
- 27 % of all peatlands (179 774 ha) are protected under different legislative status, e.g. sites of Natura 2000 network.
 - 107 Thelmological reserves, mainly raised bogs;
 - 7 peatlands complexes are included into the list of Ramsar sites. Their area is 65 600 ha.

The first known restoration of peatland in Lithuania


First "official" damming activities in the Kamanos Strict Nature Reserve in early 1980th

Kamanos Strict Nature

Nr.	Pavadinimas	Plotas (ha)
1	Algirdènų	54.77
2	Amalvas	1599.16
3	Aukštumala	873.07
4	Balandinės	71.97
5	Baltosios Vokės	37.42
6	Baužaičių	157.34
7	Gegužinės	43.16
8	Ilgašilio	7.78
9	Kamanos	3727.87
10	Kepurinės	700.47
11	Mūšos Tyrelis	477.3
12	Notigalės	145.28
13	Novaraistis	827.1
14	Pakalnių	53.38
15	Pūsčia	80.74
16	Siberijos	64.93
17	Tyruliai	551.57
18	Velniabalė	119.43
19	Žaliosios girios - Klimbalės	156.89



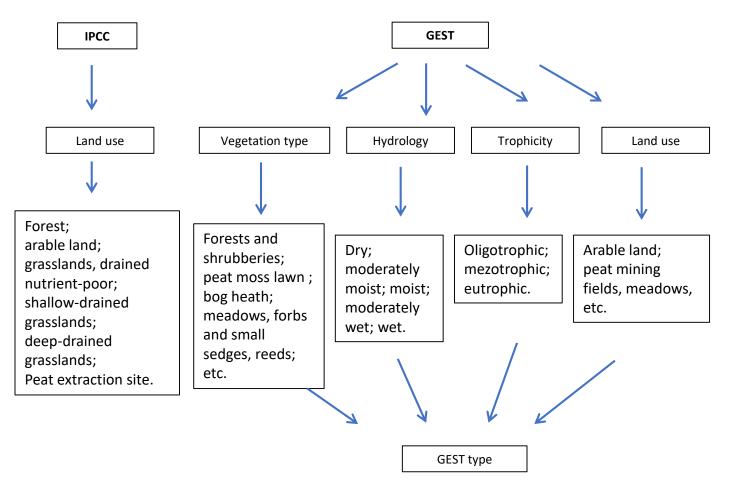
Hydrological regime restoration in Natura 2000 sites

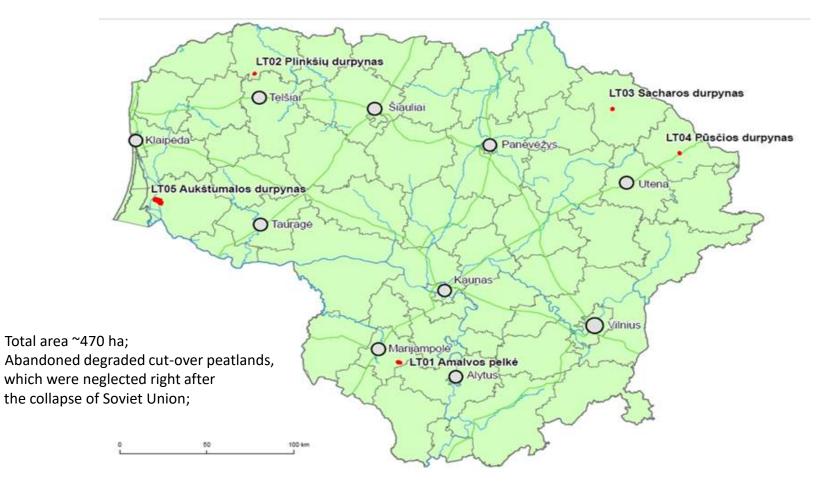
- Different data sources were used to estimate impacted areas in *Natura 2000* sites by interventions of hydrological regime restoration:
 - <u>www.biomon.lt</u> database of nature management actions developed by State Service for Protected Areas (LT);
 - Questionary of employees managing protected sites.
- Not an easy task to estimate really impacted area, mainly due to missing monitoring.
- Collected data were interacted with official reclamation data adjusted with "expert" estimation.
- It was estimated that MOST probably positive effect achieved in **8 023 ha** area:
 - 4 656.56 ha in raised bogs;
 - 3 366.73 ha in fens + transition mires.

Impact on emissions of rewetted Natura 2000 sites based on IPCCC (2013...) updated coefficients

We get poor ~ 50 kt CO₂ saving

Greenhouse Gas Emission Sites Types (GEST) approach was developed for assessing greenhouse gas (GHG) emissions from degraded and rewetted peatlands using vegetation as a proxy. The concept was elaborated by the mire researchers' group at Greifswald University (Couwenberg 2009; Couwenberg et al. 2008, 2011).




As direct measurements of GHG emissions are laborious and expensive, this approach gives a possibility to evaluate GHG fluxes by interlinking vegetation types, water table depth, peat properties and thickness.

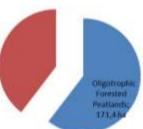
GEST approach since its initial establishment has been developed further, however, even more detailed investigations and additional data collection from various geographical regions is necessary to improve it, e.g. integrating climatic gradients, adjusting new vegetation types, etc.

Comparison of methodologies

LIFE Peat Restore project sites

Amalvas

Pūsčia



Mesotrophic and eutrophic Forested Pratlands; 112,41 ha

Both forested and severely damaged open peatland GEST types emit considerably big amounts of GHG gasses.

GHG emission estimation in Project sites based on GEST approach

	GWP	Area, ha						
	estimate (t CO2						Total	Total
GEST type	eq/ha/year)	Amalvas	Aukstumala	Sachara	Plinkšai	Pūsčia	area	emmissions
Open Peatland areas (Unused)								
Moderately moist (forb) meadows	24.0		0.86				0.86	20.64
Moderately moist bog heath	no data	3.61	1.43				5.04	
Moist reeds and (forb) meadows	12.2					4.22	4.22	51.484
Moist bog heath	9.4					6.37	6.37	59.878
Bare Peat (moist)	6.2			8.78	0.89	23.88	33.55	208.01
Bare Peat (dry)	7.5		1.33				1.33	9.975
Very moist Meadows, forbs and small sedges reeds	1.6		3.82			0.42	4.24	6.784
Wet Meadows and forbs	5.8					9.79	9.79	56.782
Very moist bog heath	4.6	2.03					2.03	9.338
Wet bog heath	24.7							
Wet small sedges reeds mostly with moss layer	3.3			9.66			9.66	31.878
Wet tall reeds	4.0		4.67			0.65	5.32	21.28
Wet peat moss lawn	-0.3			3.78	50.5		54.28	-16.284
Peat moss lawn on former peat-cut off areas	1.9							
Wet peat moss lawn with pine trees	4.1	20.6		10.43		0.2	31.23	128.043
Forested Peatlands.								
Oligotrophic Peatlands								
Moderately moist Forest and shrubberies	-3.2	89.3		19.44	16.12	11.47	136.33	-436.256
Moist Forests and shrubberies	-0.5			34.51		0.56	35.07	-17.535
Very moist Forests and shrubberies	-0.5							
Mesotrophic and eutrophic peatlands	0.0							
Dry Forests and shrubberies	43.4	89.5					89.5	3884.3
Moderately moist Forests and shrubberies	20.0	1.1	0.44			20.41	21.95	439
Moist Forests and shrubberies	12.2					0.96	0.96	11.712

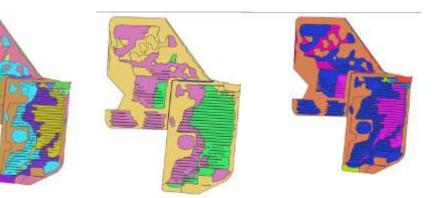
Pūsčia Thelmological Reserve – a terribly looking abandoned site

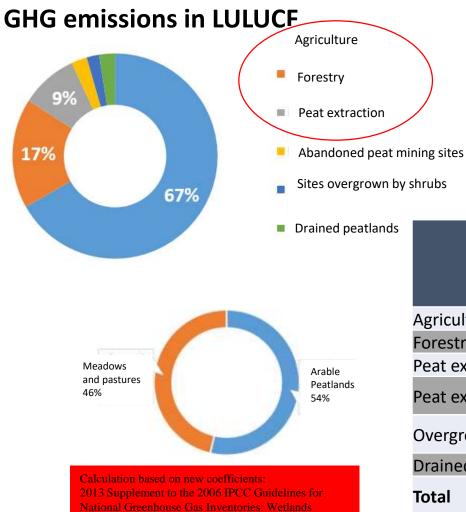
LIFE PEAT RESTORE Reduction of CO₂ emissions by restoring degraded peatlands in Northern European Lowland LIFE15 CCM/DE/000138

GHG emission reduction in project sites

Summarized table of GHG emission reduction in 5 Lithuanian project sites

Scenarios		CH4 (kt CO ₂ -eq.	GWP (kt CO ₂ -eq.
	eq. /year)	/year)	/year)
Baseline, 2018	8,3	0,3	8,5
Post restoration scenario	1,3	1,3	2,6
Savings	7,0	-1,0	5,9
Savings (%)	84	-0,4	69

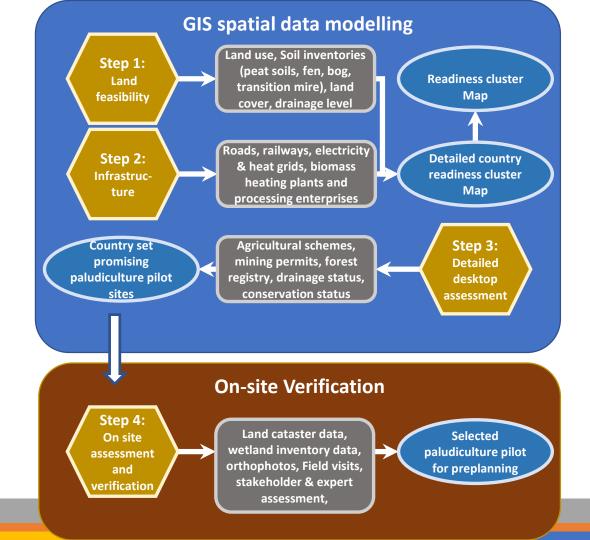

Mapping example from abandoned peatland Pūsčia:

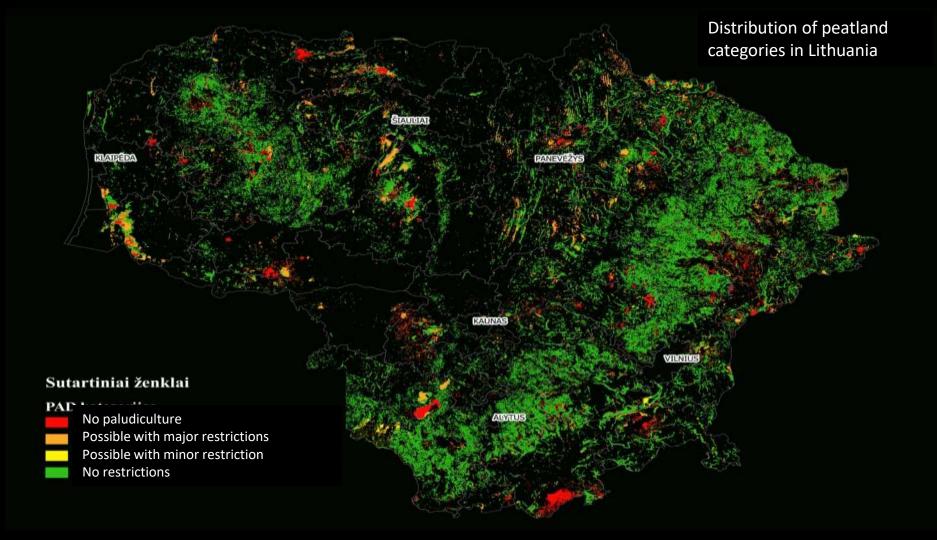


Baseline

After restoration

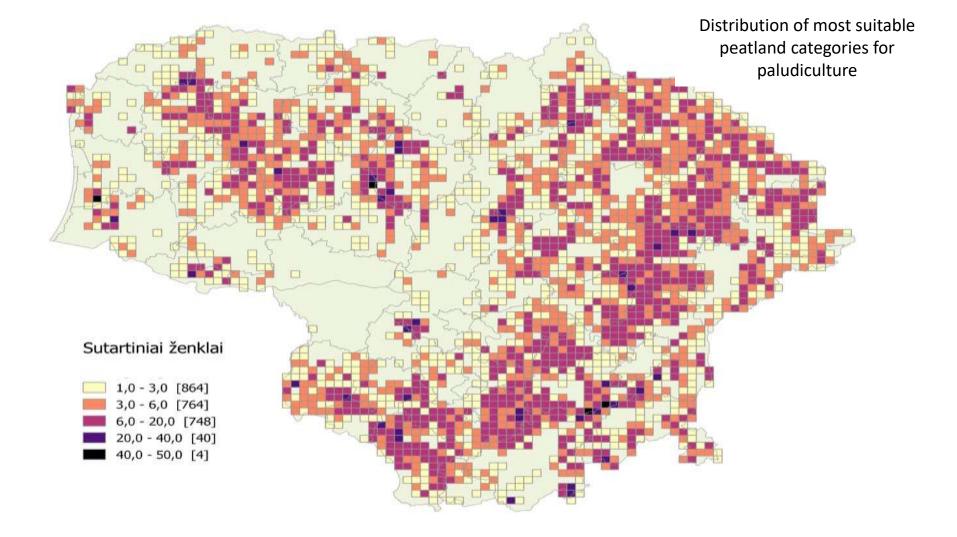
Without restoration

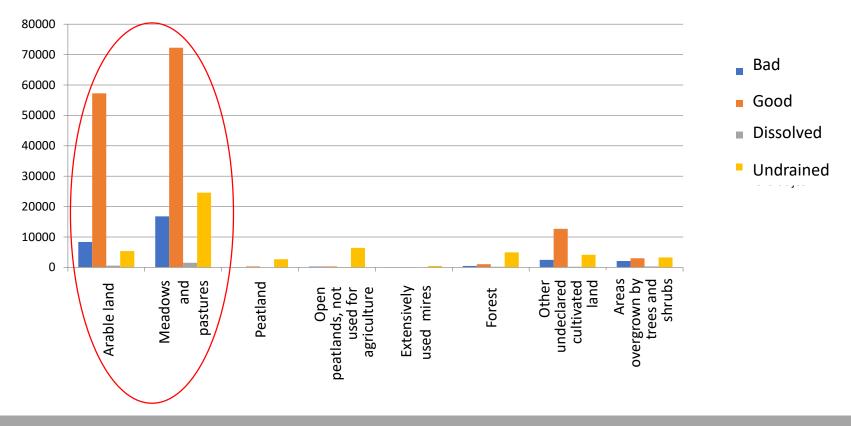


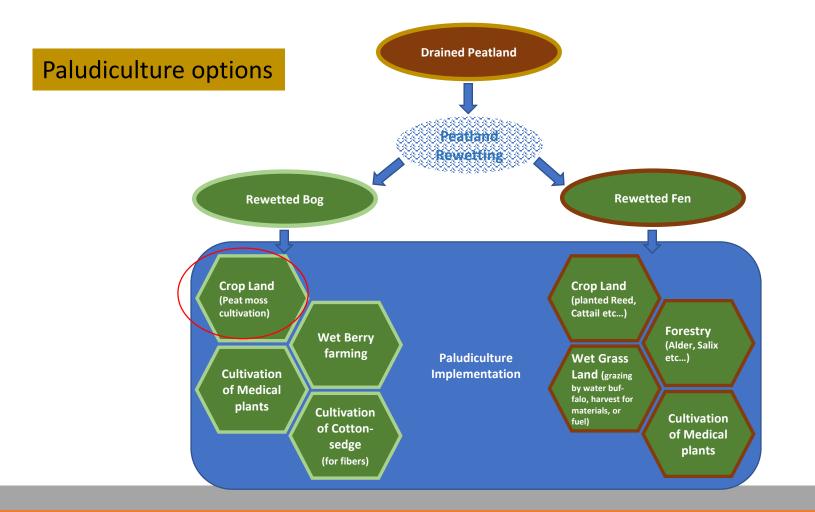


Lithuania's National Inventory of GHG – 1 900 kt of CO_2 eq. from peatlands in 2016. Total country's emissions – 21 000 kt of CO_2 eq.

Target until 2030 – Reduction by 9% in NON ETS sectors


GHG emissions kt of CO ₂ eq./year (from-to)
4 578-7 216
1 868 - 2 117
869 - 973
268
212
269
8 313 - 10 806




Paludiculture categories in Lithuania

18,2 proc	
116 959,62 ha	not possible. Mainly nature reserves, reserve forests
38,1 proc. 244 054,50 ha	paludiculture possible only after considerations, but major restrictions might appear, e.g. valid peat mining permits
2,7 proc.	paludiculture possible after considerations, but it is likely more possible, e.g. abandoned peatlands without permits for minning
41,0 proc. 262 689,53	paludiculture is possible, e.g. agricultural sitesk

Status of melioration systems in agriculturally utilized peatlands

Sphagnum spreading in Aukštumala peatland: lessons and new plans

a)

1993: wetland of international importance (Ramsar Convention) 1995: Aukštumala Telmological Reserve 2004: Nemunas Delta – NATURA 2000 site

Do we have to pray?

